Parallel Image Processing for NIF Optics Inspection

with additional contributions from John Carlson, Dave Conner, Judy Liebman, Laura Kegelmeyer, and Ketrina Yim.

CASIS Signal and Imaging Workshop November 16-17, 2006

UCRL-PRES-226167

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

- NIF operation depends on results of Optics Inspection (OI) Analysis for personnel and equipment protection.
- In certain situations, NIF shot setup cannot proceed until inspection results are available and have been reviewed by operators.

- Examples :
 - Final Optics Inspection 4k x 4k images, 192 beams, 10+ images/beam.
 - Large Optics Inspection 720 x 720 images, 192 beams, 50+ images/beam.
- Analysis must also support off-beamline activities while NIF is operating.

- Linux cluster based on HP Blades. Selection partly based on compatibility with NIF automatic beam alignment.
- Initial production cluster has eight 32-bit dual-CPU, dual-core machines with 4GB RAM.
- New cluster has 16 64-bit, 8GB blades. Two dual-core AMD Opterons per blade.
- All machines mount common NIF data directories and access the OI database.

Crate of 16 "blades"

Why Parallelize?

- Time between last acquisition and completion of processing is bottleneck in the NIF shot cycle. OI throughput is important for successful operation.
- Scenario: Final Optics inspection for all 192 NIF beams.
 - ~1 minute to acquire image set per beam
 - 25 minutes to analyze an image set
 - Use simple model. Assume processing can be done concurrently with no interference. (optimistic)
- If 32 nodes are available, processing keeps pace with acquisition.
- If 8 nodes are available, total processing time is ~3X acquisition time.

- Previously emphasis was placed on functionality, not throughput.
- One or two workstations hosted multiple analysis daemon processes, each of which served a particular imaging system.
- Each daemon processed image sets sequentially in the order they were received.
- All daemons shared the workstation's resources.

First Steps Toward Parallelism

- Obvious next step: add processors to alleviate resource contention. No code changes!
- Dedicate one processor per imaging system.
- Problems:
 - Analysis daemon is singlethreaded; processes independent image sets sequentially.
 - Inefficient resource allocation since imaging systems are typically not all active at the same time.

- OI Analysis is single-threaded Perl & Matlab. Multithreading would require significant effort, and debugging the resulting code would be considerably more difficult.
- Additional effort would be required to implement communication between processes on separate processors.
- System needs to be fault-tolerant.
- This problem isn't unique; there's no need to reinvent the solution.

- Several packages were considered for cluster management.
- We settled on SLURM (Simple Linux Utility for Resource Management) developed by LLNL, HP, and Linux NetworX.
 - Runs on 1000+ computers world-wide, including BlueGene.
 - Parallel analysis prototype was successful.
 - See <u>http://www.llnl.gov/linux/slurm/slurm.html</u> for more information.
- Allows users to queue jobs for batch processing on a cluster of computing nodes.
- Supports flexible cluster partitioning and has provisions for allocating consumable resources such as memory or CPU's.
- Able to operate even if master control node crashes.

SLURM Examples

Display cluster status:

>sinfo					
PARTITION	AVAIL	TIMELIMIT	NODES	STATE	NODELIST
batch*	up	3:00:00	8	idle	oi[001-008]
limited	up	3:00:00	1	idle	oi002

Submit a batch job:

```
srun -b -u --dependency=2628 -J lois_10319 -o logs/lois_10319.log \
    Scripts/process_image_set.pl 10319 ndrprod_oi lois
```

Display job queues:

>squeue Wed Nov	-1 8 14:54:49	9 2006					
JOBID	PARTITION LIST(REASON	NAME	USER	STATE	TIME	TIMELIMIT	NODES
4454	batch	test_8	optics	PENDING	0:00	3:00:00	1 (Resources)
4455	batch	test_9	optics	PENDING	0:00	3:00:00	1 (Resources)
4456	batch	test_10	optics	PENDING	0:00	3:00:00	1 (Resources)
4457	batch	test_11	optics	PENDING	0:00	3:00:00	1 (Resources)
4446	batch	test_0	optics	RUNNING	0:10	3:00:00	1 oidev6
4447	batch	test_1	optics	RUNNING	0:10	3:00:00	1 oidev6
4448	batch	test_2	optics	RUNNING	0:10	3:00:00	1 oidev7
4449	batch	test_3	optics	RUNNING	0:10	3:00:00	1 oidev7

• • •

- Monolithic analysis daemon was separated into two functional parts.
 - Master daemon monitors for incoming data from all systems and submits jobs to SLURM.
 - Analysis job is responsible for processing an image set.
- SLURM maintains job queue and dispatches work to available processors.
- Also reworked status reporting. Single log not helpful for concurrent processes.

- In some cases, correct job ordering is important. Additional logic was needed to ensure that time-ordered inspections finished in the order received. SLURM conveniently supports start-finish constraints.
- Typically, the bulk of the time spent analyzing an image set is spent doing image processing. However, when several independent jobs require a common resource (DB), time is spent waiting for that resource.
- If time loss due to resource contention is significant, throughput will not scale linearly with the number of available processors.

Operational Experience and Discoveries, continued

The National Ignition Facility

- Database table contention evident in time needed to store images.
- Storage operation usually takes about 2 seconds when jobs run sequentially. The average grows to 3-5 seconds when several jobs run concurrently, but times of 10+ seconds are occasionally observed.
- This particular bottleneck could be mitigated by performing the storage operation in parallel with image processing.

- Database contains entries for cluster status and queued jobs.
- Status page provides a means to quickly ascertain node health and which jobs are queued, completed, processing or have failed.
- Additional monitoring performed by Nagios: disk space, daemon status.

Node Name	Status	Time Stamp							
oi001	idle	2006-11-08 15:00:14.0							
oi002	idle	2006-11-08 15:00:14.0							
oi003	idle	2006-11-08 15:00:14.0							
oi004	idle	2006-11-08 15:00:14.0							
oi005	idle	2006-11-08 15:00:14.0							
oi006	idle	2006-11-08 15:00:14.0							
5i 007	idle	2006-11-08 15:00:14.0							
oi008	idle	2006-11-08 15:00:14.0							
Status		Claim Check ID	Set ID	D	Date	Folder	Job Number	Processor Node	Start Time
COMPLETE		.999. _272166_A9_0B_1163021512651	20369	10649	2006-11- 08 13:34:02.0	cim	2977	oi002	2006-11- 08 13:33:00.0
OMPLETE	'D	-999- 272166_B9_0B_1163021463120	20368	10648	2006-11- 08 13:32:48.0	cim	2976	oi002	2006-11- 08 13:31:42.0
									2006 11
COMPLETE	'D	-999- 272166_A8_0B_1163021380042	<u>20367</u>	10647	2006-11- 08 13:31:30.0	cim	2975	oi002	2006-11- 08 13:30:26.0
	D 246_			10647 10646	08 13:31:30.0 2006-11-	cim	2975 2974	0i002 0i002	08
COMPLETE	$\frac{D}{246}$ $\frac{D}{246}$ $\frac{D}{246}$ $\frac{D}{D}$ $\frac{D}{D}$ $\frac{D}{D}$	272166_A8_0B_1163021380042	20366		08 13:31:30.0 2006-11- 08 13:30:14.0 2006-11-	cim cim			08 13:30:26.0 2006-11- 08

- NIF Optics Inspection Analysis now has the capability of simultaneously processing data from multiple sources.
- Although processing occurs within a single process, use of the SLURM package allows multiple copies to be distributed among nodes of a Linux cluster. Nevertheless, considerable code restructuring was needed to make efficient use of the entire cluster.
- Future throughput improvements may depend not only on algorithm improvements and processing power, but optimal use of shared resources.
- In the near future, we expect to process data originating from 32+ beams with minimal impact to the NIF operational schedule. Data storage and organization will be challenging.