
Performance Improvements in
NIF Optics Inspection Software

Philip Fong,
Steve Glenn, Judy Liebman, Laura Kegelmeyer

CASIS Signal and Imaging Workshop
November 16-17, 2006

UCRL-PRES-226125
This work was performed under the auspices of the U.S. Department of Energy by University of

California, Lawrence Livermore Laboratory under Contract W-7405-Eng-48.

Performance improvements in speed and
accuracy

1. Speed: 23x speed increase in image
filtering

2. Accuracy: Improved estimation of object
extent

Images processing framework in Matlab

Detection:
Find pixels which are part of defects (seed pixels)

Filling:
Determine extent of defects by considering

neighbors of seed pixels (grow seeds)

Measurements:
Estimate properties like size of defect

Images processing framework in Matlab

Detection:
Find pixels which are part of defects (seed pixels)

Filling:
Determine extent of defects by considering

neighbors of seed pixels (grow seeds)

Measurements:
Estimate properties like size of defect

Detection algorithm based on local signal
to noise ratio

• Presented at CASIS 2005, 2004
• Defect sites are areas with high local SNR

÷
Noise: Local variance at each
pixel is estimated averaging
(local background)2

Signal: Signal at each pixel is
estimated by subtracting local
background from site

imfilter is a bottleneck in detection
speed

• Averaging was done using imfilter with
a separable Gaussian kernel
– Performed at multiple image scales

• For large images, 98% of detection time is
spent on filtering

• imfilter has bad cache behavior
– Applying the horizontal kernel is much slower

than vertical kernel (466s vs 13s)
– Matrices are stored column major in Matlab

Developed and compared imfilter
alternatives

1. Transpose the image before and after
horizontal filtering

2. Use an optimized image processing
library

3. Convolve using fast fourier transforms
(FFTs)

4. Combine using FFTs with transposing
the image

Alternative 1: Transpose for horizontal
filtering

• Horizontal filtering becomes vertical
filtering

• Pros:
– Simple to implement

• Cons:
– Not the fastest. About 2x slower than fastest

solution

out = imfilter(in,h{2},'symmetric','same','conv')';
out = imfilter(out,h{1},'symmetric','same','conv')';

Alternative 2: Use an optimized library

• DIPImage (http://www.ph.tn.tudelft.nl/DIPlib/) is
an optimized image processing library for Matlab

• Pros:
– Simple to implement

– Fast
• Cons:

– Dependence on third party library
• Possible license restrictions
• No source code

out = single(gaussf(in,sigma));

http://www.ph.tn.tudelft.nl/DIPlib/

Alternative 3: Implement convolution with
FFTs

• Convolution theorem:
• For convolution of length L sequence with length M

kernel is: O(L*M) in spatial domain
• O((L+M)log(L+M)) with FFT

– Win for long kernels
• FFTs in Matlab are highly optimized
• Pros:

– Fast, runtime is almost independent of kernel length when
kernel size << image size

• Cons:
– Relatively complex to implement
– Slower for small kernels and images

YXyx ⋅↔*

Alternative 4: Hybrid: Combine FFTs and
transposing

• Use transposing technique for smaller
images and kernels
– Avoids overhead of FFT

• Pros:
– Fast for all image and kernel sizes

• Cons:
– Even more complex than just FFTs.

Additional logic needed to select FFT vs
transposing

Hybrid method is fastest for most kernel
sizes

Filtering times on 4K x 4K Image

1

10

100

1000

0.5 5.5 10.5 15.5 20.5 25.5 30.5 35.5
Sigma (pixels)

Ti
m

e
(s

ec
)

imfilter

Transpose
DIPImage
FFT
Hybrid

Hybrid method is fastest for all image
sizes

Filtering times with sigma = 25.5

0.1

1

10

100

1000

512 1024 1536 2048 2560 3072 3584 4096

Image Size (NxN)

Ti
m

e
(s

ec
)

imfilter

Transpose
DIPImage
FFT
Hybrid

Images processing framework in Matlab

Detection:
Find pixels which are part of defects (seed pixels)

Filling:
Determine extent of defects by considering

neighbors of seed pixels (grow seeds)

Measurements:
Estimate properties like size of defect

Filling determines a defect’s extent

• Detection phase finds seed pixels in peaks
• Neighboring pixels with intensities above a pre-

determined fraction of the seed pixel intensity are
considered part of the defect

Seed

Fill cutoff

In
te

ns
ity

Position

Previous fixed cutoff method can overfill

• When a defect is on a background feature with elevated
intensity, non-defect pixels will be incorrectly labeled as
defect pixels

Seed

In
te

ns
ity Fill cutoff

Position

Determine the cutoff adaptively

• Fill pixels in decreasing order
of intensity

• Track number of pixels filled
over a sliding window of
fraction of seed pixel
intensity

• Stop when ratio of number of
pixels filled in current window
to number of pixels in
previous window exceeds a
threshold

A
B

Number of pixels between A
and B is much smaller than
between B and C

Stop at B

In
te

ns
ity

Position

C

False positives increase quickly as cutoff
is lowered

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

35

40

45
Overfilled Detection: Synthetic Shotcycle SF4 Image

Fraction of seed pixel value

C
ou

nt
(Mostly) False Positive

Real

• Number of
pixels per bin
increases for
false
positives

Adaptive filling almost eliminates false
positives on synthetic image

• Simulated image of defects varying distances from
reflectivity lines

Adaptive filling reduces false positives on
real images

• Real detections are unchanged
• Fewer pixels are assigned to a false detection

Fixed cutoff Adaptive cutoffSHOT_N050712-001-001B

New algorithms improve speed and
accuracy of NIF Optics Inspection

• Image processing time for NIF Final Optics
is cut in half

• Speed and accuracy improved by reducing
false positives by order of magnitude in
many cases

	Performance improvements in speed and accuracy
	Images processing framework in Matlab
	Images processing framework in Matlab
	Detection algorithm based on local signal to noise ratio
	imfilter is a bottleneck in detection speed
	Developed and compared imfilter alternatives
	Alternative 1: Transpose for horizontal filtering
	Alternative 2: Use an optimized library
	Alternative 3: Implement convolution with FFTs
	Alternative 4: Hybrid: Combine FFTs and transposing
	Hybrid method is fastest for most kernel sizes
	Hybrid method is fastest for all image sizes
	Images processing framework in Matlab
	Filling determines a defect’s extent
	Previous fixed cutoff method can overfill
	Determine the cutoff adaptively
	False positives increase quickly as cutoff is lowered
	Adaptive filling almost eliminates false positives on synthetic image
	Adaptive filling reduces false positives on real images
	New algorithms improve speed and accuracy of NIF Optics Inspection

