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Bayesian signal processing

is concerned with the estimation of the underlying probability
distribution of a random signal in order to perform statistical
inferences, that is,

Pr[X |Y]

statistical inferences enable the extraction of the signal from
noisy uncertain measurement data. For example, the maximum a-
posterior (MAP)

PI[X Y] = >A(:m>§x Pr[X |Y]
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Bayesian techniques are based on BAYES' rule:

Posterior Likelihood Prior

~N |/

PriY | X =Xx]xPr[X = X]
PriY =yl

T

Evidence

Bayes' Rule:  [Pr[X|Y =y]|=

This "simple relationship” is the principal foundation of Bayesian signal
processing both theoretically (derivations) and pragmatically (implementations)
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Bayesian techniques convert the prior->posterior

Estimated Distributions

Prior: Pr(X)
Posterior: Pr(X |Y) _

T
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PARTICLE FILTERS (PF)

* PF are sequential (Monte Carlo) techniques in which
the underlying posterior distribution of interest is
represented by a "cloud” of random samples
(particles)

+ The PF is a processing algorithm that (sequentially)
propagates and updates the random samples drawn
from the previous stage to obtain a set of samples
approximately distributed from the next stage
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Particle filters can be used to construct the “"empirical”
posterior distributions. For example, a static parameter

X given the data Y
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Particle filters can be applied in many areas:

Signal processing Appllcahons
— Image processing and - Biology & Biochemistry
Segmen‘l'a‘l'ion Cherrusfpy

— Model selection Economics & Business
— Tracking and navigation Genomics

Geosciences

Communications Immunology

Materials Science

— Channel estimation
— Blind equalization

— Positioning in wireless
networks

Pharmacology &
Toxicology

Psychiatry/Psychology
Social Sciences
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PFs: advantages and disadvantages™:

DISADVANTAGES

mAbility to represent arbitrary High computational complexity

densities
It is difficult to determine

optimal number of particles
mAdaptive focusing on probable

RGeS G SiiEe-SEaee Number of particles increase with

increasing model dimension

mDealing with non-Gaussian noise
Potential problems: degeneracy

and loss of diversity
= The framework allows for including

multiple models (tracking maneuvering | | .  The choice of importance density
targets) is crucial

* M. Bolic, University of Ottawa, “Theory and Implementation of Particle Filters”
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Our plan is to develop particle filters using the

following roadmap:

Sampling Bayesian | Model-Based
(Monte Carlo) Processing | Processing
Simulation Bayesian
Based « Model-Based [*
Processing Processing
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Monte Carlo (MC) approach to nonparametric

W

posterior” probability distribution estimation

MC techniques obtain random sample based representations of
probability distributions to solve a variety of estimation problems,
especially those in which a "closed-form" analytic expression is not
available, that is, usual is distribution ——> samples, MC

samples ——> distribution

The MC cg)pr'oach enables complex, multi-modal distributions to be
estimate

Many nonlinear, non-gaussian processing problems can easily be cast into
this framework

When statistics are "nonstationary,” then sequential MC methods must
be employed to solve the problem

Particle filters are a "sequential® MC method that can be applied in the
nonstationary and/or real-time cases as well as the stationary case
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MONTE CARLO (Sampling) METHODS




In most cases (non-gaussian), the posterior distribution is not
available requiring that we use "simulation-based" or non-
parametric methods for estimation and inference

These techniques are called SAMPLING METHODS
They replace numerical integration techniques
Monte Carlo (MC) sampling methods are an alternative

The KEY idea in MC is replacing the distribution function by its
SAMPLES reducing integration to summations

As the number of samples increase the equivalence becomes
established with the targeted posterior distribution enabling its
moments or estimators to be calculated, that is,

MC integration evaluates by drawing
samples, { X (¢)} from Pr(X) and assuming perfect sampling produces the estimate

Pr(X) ~ % Z 5 (X — X(i))
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Typically integration is used to estimate
expectations, but in MC the "inverse" is true

I= /\ g(x)dx

then MC methods factorize the integrand as,

g(x) — f(z)p(x) > p(x) >0 and /p('t)d't —|

where p(x) is interpreted as a probability distribution in which samples can be
drawn. This is the foundation of sampling techniques based on MC integration.
Monte Carlo integration draws samples from the required distribution and then
forms sample averages to approximate the sought after distributions, that is, it maps
integrals to discrete sums. Thus, MC integration evaluates by drawing
samples, {X (i)} from Pr(X) and assuming perfect sampling produces the estimate

N
Pr(X) =~ % Z 6 (X — X (i)) ®==1 This is the KEY to MC techniques
1=1

which upon substituting into the ategral gives

Ex{f(X)} = [ FX)Pr(X)

Here f is said to be a Monte Carlo estimate of Ex{f(X)}. Clearly, it is unbiased,
since
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Consider a gaussian example:  x~N(m,,o?)

the Monte Carlo approach is to generate /N samples from a gaussian,
that is, assuming perfect (uniform) sampling, we have that

Pr(z) ~ 1/NZ6(:1: — ;)
i=1

and therefore the mean and variance can be estimate from the samples directly using

) N N
My :/:BPI'(JE) da:z/m (1/NZ5($—33¢)) dx = 1/NZJB@‘

which follows directly from the sifting property of the delta function. Also, we
have

A N N
62 = /(:IJ—mx)2 Pr(x) dzr = /(:IJ—mx)2 (1/NZ dx — xz)) dr=1/N Z(a:i—’rhx)z

Thus, summarizing the MC approach is:
e Generate N samples from a gaussian: x; ~ N'(my, 02);

e Estimate the desired statistics of the distribution from its samples as: 1, and

o7
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Monte Carlo methods rely on samples generated from
the sampling distribution to estimate statistics (mean,
variance, etc.) as demonstrated in this Gaussian example
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es Is.

Bayes' rule for dynamic variab
Pr(X|Y) = Pr(Y|X) 11:%

!

PI’(Xt n) —

- Pr(Y;| Xy) x Pr(Xy)

Pr(Y,)
(X(©),- x®}; Y= {y(0),, y®)} ]

X, :




The posterior distribution can be estimated
using the sequential Bayesian processor (SBP):

Pr[xo\vo] — Pr[xl\\q]: :Pr[xt_l\vt_l] = Pr[xt\vt]

— W(1,0) J= - =|W(t-1t-2) W(t,t-1)

PriX|Yy |=W(t,t-1)xPr| X, 4]Y, 4 |
where the Bayes' operator is defined at each stage by
Pr{y(t)|x(®) |xPr| x(t)|x(t-1) | .
Pr[y(t)‘Yt_ﬂ |

W(tt-1):= 1,---,N
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The final FILTERING recursion evolves from
Bayes' rule

we obtain the final expression for the correction recursion as

Posterior Likelthood Prior

Pra(®)[Y) = Pr(p(®) =) x Pr(e(®)]Yer)
Pr(y(t)|Yi-1)

W
Fvidence

where we can consider the correction or:filtering distribution as a weighting of the
prediction distribution as in the full join;t case above, that is,

CORRECTION WHRIGHT  PREDICTION

N

Pr(z(t)|Yy) = Wal(t,t — 1) x Pr(z(t)|Yi1)
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The SBP for the “filtering” posterior is shown by:

y(t-1) y(®)
Prix(t—1)|Y.,] Pr{x(t)|Y,..] Prix(t)|Y,]
ST T e e T
> Update -—> Predict Update Predict >
D W (tt-1) | W, (t,t-1) | :

Predict: ~ Pr[x(t)|Y.,|= I Prix(t) | x(t 1) ]Pr[x(t-1) | Y, |dx(t—1)

Update: Prix()|Y,]=W,(t,t—1)xPr[x(t)|Y,,]

Pr[y(t)|x(t>]}
Prly(®)|Y,.]

W._(t,t-1) ::{
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MODEL-BASED (Bayesian) SIGNAL
PROCESSING




[Model-based signal processing: |

- Signal processing is the set of techniques to “"extract the useful
information from noisy measurements while rejecting the extraneous”

- If the SNR is high then simple non-physical techniques (FFTs,
wavelets, spectral estimation, etc.) can be used to extract the desired
information, BUT . . . .

+ If the SNR is low and the problem uncertain (noise, random
parameters, etc.), then more of the underlying physical phenomenology
must somehow be incorporated into the processor

THEREFORE

Model-based signal processing incorporates physical phenomenological,
measurement, and noise/uncertainty models intfo the processor to
extract the desired information while rejecting the extraneous --- even
in highly uncertain environments
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The model-based approach is simply:

"incorporating mathematical models of both
physical phenomenology and the measurement

processes including noise into the processor to

extract the desired information"
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the underlying phenomenology into a processing scheme

MBP are techniques that incorporate any "a priori“ knowledge of

Phenomenology

Raw Data

Process
Model
Measurement
- Measurement
O

Estimate
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In bio-threats, MBP technigues can incorporate any ‘a priori”
knowledge of the underlying physics into the processing scheme

Chemistry
Dynamics

Raw Data

Chemistry
Mode/

Models

Cantilever !
Array
Measurement

Cantilever
Mode/

v

Signal Extraction
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For this problem, smart bio-sensors incorporating a micro-
cantilever array can be developed using the MBP approach

0, t<ton

Raw Data

[C(t)i(li:/kd j{l_exp[_(kac(t)+k")(t_t°” M ton<tstor hawmmamn

1/;, t> 1o
2Ky (t—torr)

Parameter Fit

Y, (t) =BLEO)AG()+AZ" (t)+v,(t)

T. MB Signal
for (=1--- L Noise _g;n\

MODEL-BASED
PROCESSOR

Aé(t|t—1) = Aé(t—1|t—1) [Free Energy]
§,(t]t-1) =BT(6O)AG(t|t-1)+A2" (t)
[Deflection]

MEASUREMENTS
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State-space is a natural (mathematical)
representation of a system (of equations)

For ease of development, let us assume that we have a set of n'”* order ordinary
differential equations (ODE) with constant coefficients in continuous-time (¢ € R),
that is,

dr dn—l

— 2t + an— e+ Far—2 +agz = u
dtnt‘I‘nldtn_lt‘I' +1dtt+ 0%t ¢
where u; 1s the input or excitation function.

The usual method of solving these equations, computationally, is to rewrite them
into an equivalent set of n-first order differential equations by defining a vector
with components corresponding to the differentials, that 1s, z; := Ci;ff for 1 =
0,---.n—1or

/

dz; d”_lzt
Ty = |24 — -

dt  din1
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| State-space is a natural representation:

Taking the derivative of x; for each component, we obtain

T = A T2
dt
. dQZt
T2 = —dt2 = T3
. d"z d”_lzt dz;
Tn = Z—an—lw—F"'—al%—aozt—Fut

Collecting all of these equations and writing them into vector-matrix form, we

obtain
[z, ] [0 1 0 17 1 ] [0 ]
d : : : : : : n : u
o : _ : : : : : : .
dt | 2. 0 0o - 1 Ty 1 0
| Zn | —ap —a1 -+ —ap-1 | | Tn | 1

or in compact form

:i?t = AJ?t + B’U'Jt

for ; € R™, uy € R'*1, A € R"*"™ and B € R*"*1. Here x; is defined as the
state vector, u; the input, A is the system or process matrix and B is the input
matrix. So we see from this simplistic view, the state vector is “naturally” obtained
when we convert an n'"* order ODE to a set of n-first order equations.

Copyright © James V. Candy, 2006
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STATE-SPACE MODEL

Copyright @ Jd

The state of a system at time ¢ is the “minimum” set of variables (state variables)
along with the input sufficient to uniquely specify the dynamic system behavior for
all ¢ over the interval ¢ € [t, c0). The state vector is the collection of state variables
into a single vector. The idea of a minimal set of state variables is critical and all
techniques to define them must assure that the smallest number of “independent”
states have been defined. If not, there are some serious system theoretic issues that
could arise [2], [3].

Let us consider a general deterministic formulation of a nonlinear dynamic sys-
tem including the output (measurement) model in state-space form (continuous-
time)?

& = Az, u) = alxy) + b(ue)

ye = C (¢, us) = c(xy) + d(ug) «— Nonlinear

for x;, y+ and u; the respective /V.-state, /NV,-output and N,-input vectors with
corresponding system (process), input, measurement (output) and feedthrough func-
tions. The N, -dimensional system and input functions are defined by a(-) and b(-),
while the NV, -dimensional output and feed through functions are given by ¢(-) and
da(-).

In order to specify the solution of the /N,-th order differential equations com-
pletely, we must specify the above noted functions along with a set of /N,-initial
conditions at time ¢o and the input for all ¢ > ¢o. Here NV, is the “minimal” set of
state variables.

If we constrain the state-space representation to be linear in the states, then we
obtain the generic continuous-time, linear time-varving state-space model given by

Ty = Arxe + Bruy
ye = Crxy + Dy <«— Linear -.1)

where z;, € RN=>1 4y, € RN«>1 4, € RN>1 and the respective system, input,
output and feed through matrices are: A € RNe*Ne B ¢ RNeXNu (O ¢ RNy *Na
and D € RNv>*Nu,

33



BAYESIAN APPROACH TO STATE-SPACE
PROCESSORS




Bayesian approach to the state-space: definitions

A (z(t —
C (2(t), u(t )

where w and v are the respective process and measurement noise sources with u a
known input. Here A (-) is the nonlinear (or linear) dynamic state transition function
and C (-) the corresponding measurement function. Both conditional probabilistic
distributions embedded within the Bayesian framework are completely specified by
these functions and the underlying noise distributions: Pr(w(¢ — 1)) and Pr(v(¢)).
That is, we have the equivalence

A(x(t—1),u(t—1),w(t—1)) = Pr(z@t)|z(t—1)) < A(z(t)|z(t—1))
C(z(t), u(t),v(t) = = C(y(t)|z())
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Bayesian approach to the state-space: posteriors

“the prediction recursion charac-
terized by the Chapman-Kolmogorov equation replacing transition probability with
the implied model-based conditional, that is,

Embedded Process Model

Alz(®)|zt—1))  xPr(z(t—1)|Yie1)dz(t — 1)

Embedded Measurement Model
Pr(z(1)|Y:) = C(y(t)|z(t))
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The BSP implemented in state-space is:

C(yt-1x-1)) C(ym)|x)) C(yt+1)|xt+1)

A(x(t)|x(t-1)) A(X(t+D)|x(®))

Copyright © James V. Candy, 2006
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EXAMPLE: Given a Gauss-Markov model in state-space form:

State propagation

z(t) = At — Da — 1) + Bt — Du(t — 1) + Wt — Dw(t — 1)

State mean propagation
my(t) = A(t — Dmy(t — 1)+ B({E — Lu(t — 1)

State variance/covariance propagation

At — 1Pt — 1At — 1)+ W(t — D) Ryw(t — 1H)W'(t — 1)

{ D, k)P(k) t>k

PO (t, k) t<k

Measurement propagation

y(t) = C(t)x(t) + v(2)

Measurement mean propagation

my () = C(2)ma(2)

Measurement variance/covariance propagation

Ryy(t) = C@HP@)C(E) + Roo(?)

Ryy(t, k) = CHPE)C(t) + Row(t, k)
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GM EXAMPLE: Develop a SBP where:
X(t|t—1) = E{x(t)|Y_,}; P(t|t—1) = cov(x(t) - X(t|t-1))

#(t)t — 1), P(t]t — 1))

~ N (y(t) - (¢t — 1), Ree(t))

Substituting these probabilities into - and combining all constants into a
single constant x, we obtain

Pr(z(t)|Y (t)) K X exp [—5

~(y(t) - C(O() Ry} (O)y(t) — C (t)x(t))]

exp |~ a(t) — a(elt ~ 1)) P (et — Dfa(t) — (et — 1)

exp | +30(0) ~ 301t = DY B2 O0(0) — (01— 1)

Copyright © James V. Candy, 2006
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Substituting for the individual variables gives the
well-known optimal (M) KALMAN filter algorithm as:

Prediction

gt —1)= At — Dt —1[t—1)+ Bt — Du(t — 1) (state prediction)
Plt[t—1)= At —1)P({t — 1]t —1)A"(t — 1) + Ry (t — 1)
(covariance prediction)

Innovation

e(t) =y(t) —y(t|t —1) =y(t) — C(t)x(t|t — 1) (innovation)

Ree(T) =CQ@)PE[E—1)C"([T) + Ryu(?) (innovation covariance)

Gain

(gain or weight)

Correction

(t|t) = z(t|t — 1) + K(t)e(t) (state correction)
P(tlt) = I — K(@)C(t)|P(t|t — 1) (covariance correction)
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When linear state-space models are employed, the Bayesian
solution is the "sequential* MODEL-BASED (Kalman filter)
algorithm which as the following structure:

Noisy
Data

Prediction

v Xold

Innovation

&

\4

Update

X,q = f(model)

N

Xoew = Xog + K&

new

N\

________________ Tl—“ilter: Xnew Old + Kg

N

X

new
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model gain innovation
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SIMULATION-BASED MC APPROACH TO
SEQUENTIAL BAYESTAN PROCESSORS




Importance sampling is a generalization to the MC approach based
on the sampling distribution that samples the targeted posterior,
that is, the sampling distribution is:

I = /Xg(:c)d:c = /X (%) x q(x) dx  for /q(:c)dm =1

- a simpler distribution, ¢g(x), than the "posterior” and easier to draw
samples

- based on Markov chain theory and therefore will converge to the
posterior

- provides non-uniform sampling of the target, g(x), giving "more
importance” to some values than others

* it is said that the support of ¢g(x)"covers” that of g(x), i.e., samples
drawn from g overlap the same region of samples from g
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This leads to the sequential importance
algorithm:

These results then enable us to formulate a generic Bayesian sequential impor-
tance sampling algorithm:

— 1. Choose samples from the proposed importance distribution:|z;(¢) ~ q(x(t)| X¢—1, Y2)

— 2. Determine the required conditional distributions] Pr(x;(¢)|z(t—1)), Pr(y(¢)|x:(¢));

p

— 3. Calculate the unnormalized weights: W, () - with x(t) —
i(t);
—> 4. Normalize the weights: W;(t) and

— 5. Estimate the posterior distribution: Pr(X,|Y;) = Z,fil Wi ()0 (x(t) — (1))

Copyright © James V. Candy, 2006
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State-space Bayesian processors based on sequential importance
samplers follow easily as:

W(t) = W(t— 1) x Pr(y(t)“;((igt; ;:E:Ii(t})/l:;(t 1))

Now let us recall the general state-space characterization representing
the transition and likelihood probabilities as:

Pr(z(t)|z(t—1)) & Az()]z(—1))
Pr(y(t)|z(t)) < C(y(t)=(t))

Assuming this is true, then the SSPF recursion becomes

wi(t) ~ @)zt —1).y(0)
o w1y of CTi(t) x Alwi(t)|i(t — 1))
Wit) = Wilt =X = o et — 1),y

Wi(t)
Zi:l W; (f)

and the filtering posterior is estimated by

()|Y:) ~ ZW i(1))

Note that as IV, becomes large, in the limit, we have

limy, oo Pr(z(2)|Y;) — Pr(x(t)|Y2)
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Importance distributions provide the key:
“Transition Prior" (Gordon et. al. '93)

Another choice for an importance distribution is the transition prior. This prior
is defined in terms of the state-space representation by A(x(¢)|x(t—1)) — A(x(t—
1),u(t—1),w(t—1)) which is dependent on the known excitation and process noise
statistics. It is given by

Gprior(2(t)|2(t —1),Y:) — Pr(z(t)|z(t — 1))

Substituting this choice into the weights gives

W) = Wit—1) s E LD B ) (1) <P (0)

| BOOTSTRAP ESTIMATOR |
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PARTICLE FILTERS FOR SBP




PARTICLE FILTERS (PF)

PF are sequential MC techniques in which the underlying posterior
distribution of interest is represented by a “cloud” of random samples
(particles) in the state/parameter space

The PF is an algorithm that (sequentially) propagates and updates the
random samples drawn from the previous stage to obtain a set of
samples approximately distributed from the next stage, that is,

Pr( X, |Yt] W, (t,t-1; X; (8))x Pr| X, 1|Yt 4]

/ i-th Particle

where W (t,t - 1 X;(t)) is the weight (Bayes' operator) defined earlier and

X;(t) is the it" = partlcle at stage (time) t

Nex‘r Stage Previous Stage
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Particle filters can be used to construct posterior distributions. In
the dynamic case they are used to estimate the "instantaneous”
posterior

Wi (t)
r(X,1Y,) ZW(t)& X (1)~ X (1))
0.06 |
2
S ofetr
I
§ Moo *
S
Q I l |
1
I
I
I
0.0z - ; |
1
I
I
|
L I
I
1
o T 2swms rpragousen s s maaE X ()
1278\ /1
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Probability | DYNAMIC PARTICLES LEAD TO A
[ Wit) ] 3D-POSTERIOR SURFACE & INFERENCES

o Xy (1)
e

Pr(Xi(t:)1Y,)

Axas)vt) i ¢
’ |/ XAMAP(tS)
Pr(X,(t)1Y,) s _
0 [Ruw(t) L,
///,/ i \@Q
Pr(X,()IY,) 2 _ 9
< R S
f: A
Pr(@)/;\

! )ZMAP(tZ) t2
Pr(X;(t)Y, g
R o (1) b
Particle No. | X,(t) |
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The "generic” State-Space particle filtering method is given by:

INITIALIZE:

— 1 -
~ N,

zi(0) — Pr(z(0));  Wi(0) i=1,-.N,

IMPORTANCE SAMPLING:
zi(t) ~ A(z(t)|zi(t — 1)) [state transition]
State-space transition model
A(z(t)|zi(t —1)) = A(z(t — 1), u(t — 1), wi(t —1));  w; ~ Pr(w;(¢)) [transition]
Weight Update:

C (y(t)|zi(t)) x A(z(t)|zi(t — 1))
q(x(®)|x(t —1),y(t))

Measurement likelihood model

[weights|

C (y(t)|zi(t)) = C (2(t), ult), vi(®));  vi ~ Pr(vi(t)) [likelihood
Weight normalization
Wi(t)
SN Wilt)
DISTRIBUTION:

Wi(t) =

N,

Pr(x(t)[Yy) & > Wi(t)o(x(t) — zi(t)) [posterior distribution]
i=1
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PROBLEM: Particles deplete in number (degenerate) to
a single particle due to the increased variance in each
step; therefore,

The particles must be "rejuvenated” or equivalently resampled

Resampling inhibits the depletion problem, but increases the
uncertainty (weight variance)

If not implemented properly, it can also increase computational time
extensively (non-parallel)

Resampling is essentially a process that attempts to preserve particles
with large weights (acceptance probabilities) while discarding those
with small weights.
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UPDATE

= c(y®| X))

v @ xOW O} == [Pr[x®,]

RESAMPLE
X () = X (t)

W, (t) = W (1)

YES

OW O => Prix@lY, ] 5
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Particle Filtering: Examples, Applications
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SUMMARY

Many problems can be cast into a Bayesian framework in order
to solve a suite of problems

No longer are we restricted to nonlinear approximations and
gaussian processes

Sequential Bayesian processors evolve as natural extensions

which incorporate Markovian state-space structures

Problem solutions for highly uncertain, noisy measurements
using physics-based signal processing models and sequential
Bayesian processing implemented with particle filtering
techniques add a new tool for signal processors
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