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ORGANIZATION

• Introduction

• Background into Bayesian approach 

• Monte Carlo (MC) methods for Bayesian inference

• Sequential Bayesian processor (SBP)

• Model-based signal processing

• Bayesian approach to state-space processors

• Simulation-based MC approach to SBP

• Particle filtering for SBP 

• Performance analysis

• Applications (nonlinear/multi-modal)

• Summary
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INTRODUCTION
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Bayesian signal processing

• is concerned with the estimation of the underlying probability 
distribution of a random signal in order to perform statistical 
inferences, that is, 

• statistical inferences enable the extraction of the signal from 
noisy uncertain measurement data. For example, the maximum a-
posterior (MAP)

P̂r[ | ]X Y

ˆ ˆ ˆPr[ | ]            X= max  Pr[ | ]
X

X Y X Y⇒
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Bayesian techniques are based on BAYES’ rule:

Posterior Likelihood Prior

Evidence

This “simple relationship” is the principal foundation of Bayesian signal 
processing both theoretically (derivations) and pragmatically (implementations)

[ ] Pr[ | ] Pr[ ]Pr |
Pr[ ]

Y X x X xX Y y
Y y

= × =
= =

=
Bayes’ Rule:
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Bayesian techniques convert the prior posterior

Estimated Distributions 

Prior: ( )Pr X

Posterior: ( )Pr |X Y
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PARTICLE FILTERS (PF)

• PF are sequential (Monte Carlo) techniques in which 
the underlying posterior distribution of interest is 
represented by a “cloud” of random samples
(particles)

• The PF is a processing algorithm that (sequentially) 
propagates and updates the random samples drawn 
from the previous stage to obtain a set of samples 
approximately distributed from the next stage
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Particle filters can be used to construct the “empirical”
posterior distributions. For example, a static parameter 
X given the data Y
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Particle filters can be applied in many areas:

• Signal processing
– Image processing and 

segmentation
– Model selection
– Tracking and navigation

• Communications
– Channel estimation
– Blind equalization
– Positioning in wireless 

networks

• Applications
– Biology & Biochemistry
– Chemistry
– Economics & Business
– Genomics
– Geosciences
– Immunology
– Materials Science
– Pharmacology &                     

Toxicology
– Psychiatry/Psychology
– Social Sciences
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PFs: advantages and disadvantages*:

ADVANTAGES
Ability to represent arbitrary 

densities

Adaptive focusing on probable 
regions of state-space

Dealing with non-Gaussian noise

The framework allows for including 
multiple models (tracking maneuvering 
targets)

DISADVANTAGES
• High computational complexity

• It is difficult to determine 
optimal number of particles

• Number of particles increase with 
increasing model dimension

• Potential problems: degeneracy 
and loss of diversity

• The choice of importance density 
is crucial

* M. Bolic, University of Ottawa, “Theory and Implementation of Particle Filters”
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Our plan is to develop particle filters using the 
following roadmap:

Sampling
(Monte Carlo)

Bayesian
Processing

Model-Based
Processing

Bayesian
Model-Based
Processing

Simulation
Based

Processing

Particle
Filtering
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BACKGROUND



Copyright © James V. Candy, 2006 13

Monte Carlo (MC) approach to nonparametric 
“posterior” probability distribution estimation

• MC techniques obtain random sample based representations of 
probability distributions to solve a variety of estimation problems, 
especially those in which a “closed-form” analytic expression is not
available, that is, usual is distribution              samples, MC
samples                distribution

• The MC approach enables complex, multi-modal distributions to be 
estimated 

• Many nonlinear, non-gaussian processing problems can easily be cast into 
this framework

• When statistics are “nonstationary,” then sequential MC methods must 
be employed to solve the problem

• Particle filters are a “sequential” MC method that can be applied in the 
nonstationary and/or real-time cases as well as the stationary case
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MONTE CARLO (Sampling) METHODS
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In most cases (non-gaussian), the posterior distribution is not
available requiring that we use “simulation-based” or non-
parametric methods for estimation and inference

• These techniques are called SAMPLING METHODS
• They replace numerical integration techniques
• Monte Carlo (MC) sampling methods are an alternative
• The KEY idea in MC is replacing the distribution function by its 

SAMPLES reducing integration to summations
• As the number of samples increase the equivalence becomes 

established with the targeted posterior distribution enabling its 
moments or estimators to be calculated, that is,
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Typically integration is used to estimate 
expectations, but in MC the “inverse” is true

This is the KEY to MC techniques
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Consider a gaussian example: ( )2,x xx N m σ∼
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(a) Sampling Realization

Monte Carlo methods rely on samples generated from 
the sampling distribution to estimate statistics (mean, 
variance, etc.) as demonstrated in this Gaussian example
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SEQUENTIAL BAYESIAN PROCESSOR (SBP)
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Bayes’ rule for dynamic variables is: 

{ } { }: (0), , ( ) ; : (0), , ( )t tX x x t Y y y t⎡ ⎤= =⎣ ⎦
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The posterior distribution can be estimated 
using the sequential Bayesian processor (SBP):

( )

( )

1 1

1

                        Pr W , -1 Pr

where the Bayes' operator is defined at each stage by

Pr ( ) ( ) Pr ( ) ( 1)
                        W , -1 : ;   1, ,    

Pr ( )

t t t t

t

t t

t t t t
t t t N

t

− −

−

⎡ ⎤ ⎡ ⎤= ×⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤× −⎣ ⎦ ⎣ ⎦= =
⎡ ⎤⎣ ⎦

X Y X Y

y x x x
y Y

( )W 1,0 ( )W 1, - 2t t− ( )W , -1t t   ⇒ ⇒

o oPr ⎡ ⎤⎣ ⎦X Y 1 1Pr ⎡ ⎤⎣ ⎦X Y -1 -1Pr t t⎡ ⎤⎣ ⎦X Y Pr t t⎡ ⎤⎣ ⎦X Y⇒ ⇒   ⇒ ⇒
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The final FILTERING recursion evolves from 
Bayes’ rule
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The SBP for the “filtering” posterior is shown by:

[ ] [ ] [ ]

[ ] [ ]

[ ]
[ ]

1 1

c 1

c
1

Predict:       Pr ( ) | Pr ( ) | ( 1) Pr ( 1) | ( 1)

Update:         Pr ( ) | W ( , 1) Pr ( ) |

Pr ( ) | ( )
                      W ( , 1) :=

Pr ( ) |

t t

t t

t

x t Y x t x t x t Y dx t

x t Y t t x t Y

y t x t
t t

y t Y

− −

−

−

= − − −

= − ×

⎡ ⎤
− ⎢ ⎥

⎣ ⎦

∫

Predict PredictUpdate Update

[ ]1Pr ( 1) | tx t Y −− [ ]1Pr ( ) | tx t Y − [ ]Pr ( ) | tx t Y
( 1)y t − ( )y t

( )CW , -1t t( )CW , -1t t ∫ ∫
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MODEL-BASED (Bayesian) SIGNAL 
PROCESSING
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Model-based signal processing:
• Signal processing is the set of techniques to “extract the useful 
information from noisy measurements while rejecting the extraneous”

• If the SNR is high then simple non-physical techniques (FFTs, 
wavelets, spectral estimation, etc.) can be used to extract the desired 
information, BUT . . . .

• If the SNR is low and the problem uncertain (noise, random 
parameters, etc.), then more of the underlying physical phenomenology 
must somehow be incorporated into the processor

THEREFORE
• Model-based signal processing incorporates physical phenomenological, 
measurement, and noise/uncertainty models into the processor to 
extract the desired information while rejecting the extraneous --- even 
in highly uncertain environments
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The model-based approach is simply:

"incorporating mathematical models of both 
physical phenomenology and the measurement
processes including noise into the processor to 
extract the desired information"
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MBP are techniques that incorporate any “a priori” knowledge of 
the underlying phenomenology into a processing scheme

Phenomenology

Measurement

Noise

Process
Model

Measurement
Model

Noise
Model

MBPMBP

Raw Data 

Estimate 
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In bio-threats, MBP techniques can incorporate any “a priori”
knowledge of the underlying physics into the processing scheme

Cantilever 
Array
Measurement  

Noise

Chemistry 
Model 

Cantilever 
Model

Noise
Models

MBPMBP

Raw Data 

Signal Extraction

Chemistry 
Dynamics
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For this problem, smart bio-sensors incorporating a micro-
cantilever array can be developed using the MBP approach
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State-space is a natural (mathematical) 
representation of a system (of equations)
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State-space is a natural representation:
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STATE-SPACE MODEL

Nonlinear 

Linear 
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BAYESIAN APPROACH TO STATE-SPACE 
PROCESSORS
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Bayesian approach to the state-space: definitions
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Bayesian approach to the state-space: posteriors
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The BSP implemented in state-space is:

( )( ) ( 1)x t x t −A ( )( 1) ( )x t x t+A

( )( 1) ( 1)y t x t− −C ( )( ) ( )y t x tC ( )( 1) ( 1)y t x t+ +C

( 1)x t − ( )x t ( 1)x t +

( 1)y t − ( )y t ( 1)y t +

1t − t 1t +
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EXAMPLE: Given a Gauss-Markov model in state-space form:
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GM EXAMPLE: Develop a SBP where:
{ }1ˆ ˆ( | 1) : ( ) | ; ( | 1) : cov( ( ) ( | 1))tx t t E x t Y P t t x t x t t−− = − = − −
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Substituting for the individual variables gives the 
well-known optimal (GM) KALMAN filter algorithm as:
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When linear state-space models are employed, the Bayesian 
solution is the “sequential” MODEL-BASED (Kalman filter)
algorithm which as the following structure:

ˆ x new = ˆ x old + Kε

Prediction

Innovation

Update

Noisy
Data

ˆ x old

ˆ x new

ε

ε = y − ˆ y 

ˆ x new = ˆ x old + Kε

model gain   innovation

Filter:Filter:

ˆ x old = f (model)
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SIMULATION-BASED MC APPROACH TO 
SEQUENTIAL BAYESIAN PROCESSORS
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Importance sampling is a generalization to the MC approach based 
on the sampling distribution that samples the targeted posterior, 
that is, the sampling distribution is:

• a simpler distribution, q(x), than the “posterior” and easier to draw
samples

• based on Markov chain theory and therefore will converge to the 
posterior

• provides non-uniform sampling of the target, g(x), giving “more 
importance” to some values than others

• it is said that the support of q(x) “covers” that of g(x), i.e., samples 
drawn from q overlap the same region of samples from g 
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This leads to the sequential importance 
algorithm:
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State-space Bayesian processors based on sequential importance 
samplers follow easily as:
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Importance distributions provide the key: 
“Transition Prior” (Gordon et. al. ’93)

BOOTSTRAP ESTIMATOR 
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PARTICLE FILTERS FOR SBP
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PARTICLE FILTERS (PF)

• PF are sequential MC techniques in which the underlying posterior 
distribution of interest is represented by a “cloud” of random samples
(particles) in the state/parameter space

• The PF is an algorithm that (sequentially) propagates and updates the 
random samples drawn from the previous stage to obtain a set of 
samples approximately distributed from the next stage, that is,

Next Stage             Previous Stage

i-th Particle

( )

( )

1 1

i

                        

          Pr , -1; ( ) Pr

where W , -1; ( )  is the weight (Bayes' operator) defined earlier and

( ) is the  particle at stage (time) 
   

t t i i t t

i
th

i

X W t t X t X

t t X t

X t i t

− −⎡ ⎤ ⎡ ⎤= ×⎣ ⎦ ⎣ ⎦

−

Y Y
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Particle filters can be used to construct posterior distributions. In 
the dynamic case they are used to estimate the “instantaneous”
posterior

8 ( )X t

8 ( )W t

( ) ( )
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P̂r | ( ) ( ) ( )
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The “generic” State-Space particle filtering method is given by: 
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PROBLEM: Particles deplete in number (degenerate) to 
a single particle due to the increased variance in each 
step; therefore,

• The particles must be “rejuvenated” or equivalently resampled

• Resampling inhibits the depletion problem, but increases the 
uncertainty (weight variance)

• If not implemented properly, it can also increase computational time 
extensively (non-parallel)

• Resampling is essentially a process that attempts to preserve particles 
with large weights (acceptance probabilities) while discarding those 
with small weights.
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{ }ˆˆ ( 1), ( 1)i ix t W t− − 1Pr ( 1) tx t Y −⎡ ⎤−⎣ ⎦

{ }ˆˆ ( ), ( )i ix t W t 1Pr ( ) tx t Y −⎡ ⎤⎣ ⎦

Pr ( ) tx t Y⎡ ⎤⎣ ⎦{ }( ), ( )i ix t W t

{ }( ), ( )i ix t W t Pr ( ) tx t Y⎡ ⎤⎣ ⎦

STATE-SPACE SIR ALGORITHM 
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i i
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⇒
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RE-
SAMPLE

PREDICT 

RE-
SAMPLE

PREDICT 

{ }( ), ( )i ix t W t { }( 1), ( 1)i ix t W t+ + { }ˆˆ ( 1), ( 1)i ix t W t+ +

1Pr ( 1) tx t Y −⎡ ⎤−⎣ ⎦ Pr ( ) tx t Y⎡ ⎤⎣ ⎦ 1Pr ( 1) tx t Y +⎡ ⎤+⎣ ⎦

1t − 1t +t

UPDATE

{ }ˆˆ ( ), ( )i ix t W t

( )( 1) | ( 1)C y t x t+ +

( )( 1) | ( )A x t x t+ ( )( 2) | ( 1)A x t x t+ +( )( ) | ( 1)A x t x t −

{ }ˆˆ ( 1), ( 1)i ix t W t− −

UPDATE

( )( ) | ( )C y t x t

MOVIE
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Particle Filtering: Examples, Applications
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SUMMARY

• Many problems can be cast into a Bayesian framework in order 
to solve a suite of problems

• No longer are we restricted to nonlinear approximations and 
gaussian processes

• Sequential Bayesian processors evolve as natural extensions 
which incorporate Markovian state-space structures

• Problem solutions for highly uncertain, noisy measurements 
using physics-based signal processing models and sequential 
Bayesian processing implemented with particle filtering
techniques add a new tool for signal processors
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