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Method-of-Experts (MOE) Reduce the Effects of Filter Parameter 
Uncertainties in State Estimation Applications

• Given a bank of filters, the goal of the method-of-experts is to assign the greatest 
weight to the filter with the lowest mean-square-error (MSE), thereby minimizing the 
MSE of the weighted linear sum of the output (y* ) at each discrete instant of time.

• MOE is sometimes associated with/known as,
• Multiple Model
• Multiple Hypothesis
• Magill Filter Bank.

• Approach used in this presentation was developed by, 
• W. S. Chaer, R. H. Bishop, J. Ghosh, “A mixture of experts framework for 
adaptive Kalman filtering”, IEEE Trans. Systems, Man and Cybernetics, vol. 
27, no. 3, June 1997.

• Another useful paper is the following,
• K. C. Slatton, V. Aggarawal, K. Nagarajan, “Estimating failure modes using a 
multiple-model Kalman filter”, University of Florida, ASPL Rep_2004-03-001.
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Approach Taken to Demonstrate UKF/MOE Effectiveness

Initially given:

• Discrete Kalman filters (KFs) assume noise terms to be white zero-mean 
Gaussian sequences.

• Discrete unscented Kalman filters (UKFs) assume noise terms to be zero-mean, 
however they can be non-Gaussian sequences (single-modal).

• MOE approach assumes that residuals are of a known distribution (e.g., 
Gaussian). 

Demonstrate:
1) Assemble a single layer of N UKFs whose outputs and residuals are input to the 

MOE gating algorithm. 

a) Show that with white zero-mean Gaussian disturbances added to the 
model, the UKF/MOE system works similarly to the EKF/MOE system.

2) Modify the MOE algorithm to numerically approximate any unknown probability 
density function.

3) Use the MOE algorithm and repeat (1) with non-Gaussian disturbances added to 
the model.

4) Use the modified MOE algorithm and repeat (1) with non-Gaussian disturbances 
added to the model.

a) Observe any differences between the results of (3) and (4).

Retain UKF 
flexibility
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Block Diagram of Single-Layer MOE Network
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Gate weights are generated by forcing the residuals and covariances to 
conform to a Gaussian pdf.

This is required in a standard Kalman or extended Kalman filter (EKF), and is 
allowable in a UKF provided that the noise terms are Gaussian.

Note the absence of 
feedback from y* to the KFs

The KFs are not adaptive
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The MOE Is Easily Applied to the UKF

• A discrete system with additive state and sensor noise terms was used.

• The extended Kalman filter (EKF) 
relies on the Jacobian (H ), 
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• The unscented Kalman filter (UKF) uses
the nonlinear measurement function (h ), 
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A Constant Velocity Discrete Model Was Used for the Simulations
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• CV trajectory
• Disturbed trajectory
• Estimated trajectory

Typical simulation run
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EKF and UKF Gate Weights for Gaussian Disturbances

• Shown in yellow are the normalized mean-squared-errors of each filter

• The goal of the MOE was to assign the greatest weight to the filter with the lowest MSE

• performance metric = y*/ min { MSEi } 

EKFpm = 1.08 UKFpm = 1.03Nearly identical 
performance metric
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Numeric Calculation of PDF of Residuals

• UKF cannot rely on residuals conforming to a strictly Gaussian distribution.
• Numerically approximate the residual distributions using some method; in this case a 
histogram was used (requires an application with many measurements). 
• Resolution or granularity becomes an issue.
• Assume that the noise processes are wide sense stationary (WSS) due to the time lag 
associated with the histogram. 
• Noise processes are independent but not necessarily identically distributed.
• Assuming a restricted set of probability functions, like generalized Gaussians 
(p=1:Laplacian,  p=2:Gaussian, …,  p=8:nearly uniform;  p shaping parameter), then the 
residuals may be decorrelated.
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UKF Gate Weights for Gaussian Disturbances Calculated by MOE 
and Modified MOE

• An identical set of noise sequences were saved and run through each filter; the same set  
for the two systems.
• The performance is equivalent with the exception that the learning gains could be 
adjusted for the two systems.
• A comprehensive Monte Carlo set has yet to be made.

UKFpm (Gauss fit) = 1.03 UKFpm (Numerical fit) = 1.00
Nearly identical 

performance 
metric
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Aggregate Non-Gaussian Disturbances 
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Uniform + Gaussian

Rayleigh + Gaussian

Gaussian + Mix

Rayleigh + Mix

Process noises (Q) Sensor noises (R)
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UKF Gate Weights for Non-Gaussian Disturbances Calculated by MOE 
and Modified MOE:  Q & R Both Centered About Different UKFs

UKFpm (Gauss fit) = 3.46 UKFpm (Numerical fit) = 0.96

MSE i = 1:9 =  [ 0.65   0.43   0.32Q 0.57   0.79   1.00   0.93   0.26R 0.55 ]

UKF_Q (iMin=3) = Q TRUE

UKF_R (iMin=8) = R TRUE

UKF_Q3 _R8 (i=1:9) system under test

MSE was small 
early and large 

late
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UKF Gate Weights for Non-Gaussian Disturbances: κ and β Varied to 
Create Different UKF Sigma Points for Each Filter (Q & R Accurate)

UKFpm (Gauss fit) = 1.00 UKFpm (Numerical fit) = 1.00

• Sigma Points were varied for each filter by varying κ and β.

• Scenario was intentionally set to have two minima equal to three significant digits, as well as other 

MSE values that were only a few percentage points larger. This tested the sensitivity of the UKF/MOE 

system.

• Unmodified Gaussian-fit MOE worked qualitatively better.

MSE a 
function 
of time

MSE a 
function of 

time

MSE i = 1:9 =  [ 0.76   0.73   0.71   0.72   0.73   0.74   0.71   0.95   1.00 ]
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Conclusions Based On A Single-Layer Network of UKFs With 
Additive Noise Disturbances

• The MOE algorithm has been shown to work with unscented Kalman filters with 
additive Gaussian disturbances.

• A modified MOE algorithm has been shown to work with unscented Kalman filters 
with non-Gaussian additive disturbances.

• For the cases where the process and measurement covariance terms were varied 
in order to force the UKFs off of their nominal operating points, the modified MOE 
approach performed considerably better than the unmodified Gaussian MOE 
approach for non-Gaussian disturbances.

• For all other cases, including varying the UKF sigma points with non-Gaussian 
disturbances, the two approaches performed equivalently.


