

Time Resolved Measurement of Transient Acoustic Waves using A Frequency Domain Photoacoustic Microscopy System

Oluwaseyi Balogun, Ph.D

Thesis Advisor : Professor Todd W. Murray

Department of Aerospace and Mechanical Engineering Boston University 110 Cummington Street Boston, MA 02215

1

OUTLINE

- □ Photoacoustic Microscopy: Background and Applications
- □ Motivation Signal to Noise Ratio Considerations
- **D** Experimental Setup
- **D** Time Domain Signal Analysis
- Conclusions

PHOTOACOUSTIC MICROSCOPY (Laser Based Ultrasonics)

- Pulsed or modulated CW laser illuminates the sample surface
- Absorption of incident light leads to local heating of the sample
- Thermoelastic expansion of the heat active region generates coherent acoustic waves
- Generated acoustic waves are detected by measuring the sample surface displacement or elastic strain using optical detection systems

Advantages of Photoacoustic Microscopy over Conventional Acoustic Microscopy

- Non-contact, remote materials inspection
- Extremely high fidelity (generation and detection of acoustic waves over GHz bandwidth possible)
- High spatial resolution (important for the characterization of MEMS and nanoscale structures)
- Rapid scanning possible leading to reduced inspection time

Applications Include the Measurement of:

- Dimensional properties such as thickness or density of thin films and membranes
- Mechanical properties such as residual stress, elastic modulus, Poisson's ratio
- Micro- structural properties such as grain-size and texture
- Surface properties, surface defects, coating quality

Laser Sources used for Acoustic Wave Generation

GENERATION OF BROADBAND ACOUSTIC WAVES

- Nanosecond sources: Q- switched lasers
- Femtosecond and picosecond sources: Mode-locked lasers

GENERATION OF NARROWBAND ACOUSTIC WAVES

• Temporally modulated pulsed laser sources: Mode-locked or Q switched pulse trains, AO modulated Q switched lasers, Laser array Sources

OTHER:

Direct modulated CW laser: Generated with Pseudo-random Sequence

(Pierce *et. al.*, Appl. Phys. Lett. 72(9), 1030, 1997, Madaras and Anastasi, AIP (509) 303, 2000)

Signal to Noise Ratio (SNR) of an Optical Detection System

Noise Sources: Thermal noise, shot noise, intensity and wavelength instabilities, etc (Wagner and Spicer, J. Opt. Sc. Am B 4(8), 1316, 1997, Wagner, *Physical Acoustics*)

Shot Noise Limited SNR: SNR $\alpha \delta \sqrt{\frac{P}{B}}$

- δ = Acoustic wave amplitude
- P = Optical power incident on the photodetector
- B = Bandwidth of the detection system

Approach Used to Improve the SNR: Focus the acoustic energy into an extremely narrow frequency band and match the bandwidth of the detection system to the acoustic spectrum.

BUEngineering

Towards the Development of a Photoacoustic Microscopy System with an Improved Signal to Noise Ratio (SNR)

High resolution Measurements Require:

tightly focused excitation source
generation of high frequency acoustic waves

Pulsed Lasers Can be Used **BUT**: \Box energy must be kept low: $\delta \downarrow$ \Box acoustic energy distributed over a large bandwidth: B

NET RESULT

SNR
$$\alpha \ \delta \sqrt{\frac{P}{B}}$$

Our Approach: Low power, sinusoidally modulated CW laser source \Box power low: $\delta \downarrow$ \Box acoustic energy focused into extremely narrow frequency band: $B \downarrow \downarrow \downarrow$ NET RESULT *SNR* $\alpha \delta \sqrt{\frac{P}{B}}$

EXPERIMENTAL SETUP

CHALLENGE: EXTRACT QUANTITATIVE INFORMATION

 \Box Measured magnitude and phase of the signal at *f* are influenced by the entire acoustic field

□ Extraction of materials properties/ quantitative NDE difficult

TIME DOMAIN RECONSTRUCTION

 \Box Material is excited using sinusoidal modulation at given frequency (*f*) and at a fixed source to receiver distance

- \Box Magnitude and phase of the signal at *f* is recorded
- □ Measurement is repeated over the frequency range of interest
- □ A time domain "pulsed" response is constructed

Murray and Balogun, Appl. Phys. Lett. 85(14), 2974, 2004, Balogun and Murray, J. Appl. Phys., 100, 034902, 2006

TIME DOMAIN RECONSTRUCTION

Frequency range = 1 - 200 MHz $f_0 = 1.0$ MHz

Aluminum (Top dimensions $= 25 \times 60 \text{ mm}$)

 \Box Arrivals after T_R will appear as "alias arrivals" at T < T_R

 $\Box f_0$ must be chosen such that T_R is greater than the decay time (τ) of the acoustic field to unambiguously reconstruct the time domain response.

SIGNAL TO NOISE RATIO (SNR)

□ SNR improves with number of frequency samples acquired (*N*) $SNR \propto N^{\frac{1}{2}}$ □ τ allows for selection of minimum f_0 , oversampling is analogous to averaging in the time domain

BUEngineering

TIME DOMAIN ALIASING

Frequency range = 0.2 - 10 MHz, $f_0 = 0.5$ KHz, $T_R = 2$ ms

Tungsten (Top dimensions $= 30 \times 50 \text{ mm}$)

14

NOISE IN SYNTHESIZED WAVEFORMS

NOISE AS A FUNCTION OF TIME WINDOW

BUEngineering

SIGNAL TO NOISE RATIO (SNR)

□ Here the acoustic decay time is $< 20\mu$ s □ SNR dependence on *N* confirmed

Frequency range = 1 - 10 MHz

SYNTHESIZED WAVEFORMS

Aluminum (Top dimensions = 25 X 55 mm)

SNR

High Frequency Measurements: Theory and Experiment

Tungsten(Top dimensions = 40 X 50 mm)

CONCLUSIONS

- A frequency domain photoacoustic microscopy system was developed for the characterization of micro- and nanoscale materials.
- □ The displacement sensitivity of the optical detection system was shown to be in the femtometer range for a detection bandwidth of 1 Hz.
- Temporal resolution of transient acoustic waves was obtained by synthesizing a pulse response from the frequency domain data