Measurement Uncertainty for Automatic Alignment Algorithm

Presentation to LLNL CASIS Workshop

Abdul Awwal, Clement Law and Walter Ferguson

Automatic Alignment & Imaging Team National Ignition Facility (NIF), Laser Engineering division (LED) Lawrence Livermore National Laboratory

November 16-17, 2006

UCRL-PRES-226162

The work was performed under the auspices of the U.S. Department of Energy National Nuclear Security Administration by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

Outline

- Review of earlier works
- Motivation
- Normal pointing uncertainty
- Pinhole image uncertainty
- Comparison of noise-based and new uncertainty

What causes the measurement uncertainty?

- Tolerances in the lenses
- Phase and amplitude aberrations of wavefront
- Detector noises
- Noise introduced by optical defects
- Algorithm Parameter variation

Uncertainty is an attempt to quantify these variations

Noise-based model uses Monte-Carlo simulation to estimate variations in position measurement

The National Ignition Facility

100 image sets are created for each noise level, the deviation of the position estimate is a measure of uncertainty

239.2 Simulated KDP image set Ideal centroid = (318.5, 238.5) 239.0 Amplitude 200, noise 20 Mean centroid = (318.502, 238.504) Three sigma = 0.131168 238.8 238.6 238.4 238.2 238.0 318.4 318.0 318.2 318.6 318.8 319.0 319.2

3 x the radial standard deviation is the measure of uncertainty

Uncertainty vs. noise curve generated from 800 images with varying amplitude and noise

These curves are part of a truth table associated with each algorithm. The truth table is looked up to find the uncertainty. The input to the table is an estimate of noise.

A generic algorithm is applied to all Automatic Alignment processing loops

Position is a function of various parameters that are used by the algorithm, which are quantified by the uncertainty measurement

Various ROI lead to different position estimates

Expanding or shrinking the ROI affects the position estimate (4 pixels variation shown)

Dynamic Thresholding example shows centroid location moves with different values

In the weighted centroid only the largest blob is chosen; a multimodal distribution could significantly vary the estimate

Somewhat Symmetric

As the profile changes between symmetric and unsymmetric, there is greater chance of position variability

Uncertainty is the range of centroid positions as threshold varies from minimum to ½ max (intensity)

The National Ignition Facility

Uncertainty is the range of centroid positions obtained by adjusting the threshold

Threshold chosen to preserve shape of the object

Position estimate varies as threshold changes

*** ** **** Pixels Pixels ♦ Series1 180 -180 -Pixels Pixels

Binary Centroid (Threshold 21-61)

Weighted Centroid (Threshold 21-61)

Comparison of old and proposed method of uncertainty measurement

BEAM, LOOP = "AA TSF PINHOLE CHECK" UNCERTAINTY COMPARISON (8-8-06) 1.8 UNCERTAINTY (8-7-06) (M TH) 1.6 - UNCERTAINY (8-1-06) (NON-NORM) 1.4 1.2 UNCERTAINTY (PIXELS) 0.8 0.6 0.4 0.2 0 93 139 185 231 277 323 369 415 461 507 553 599 645 691 737 783 829 875 921 967 1013 1059 1105 1151 47 **IMAGE INDEX**

This measurement results in higher uncertainty estimates

Comparison of old and proposed method of uncertainty measurement

This measurement correlates well with image quality

Comparison of old and proposed method of uncertainty measurement

Normal Pointing Uncertainty Algorithm

Distribution shows how the uncertainty relates to the beam quality

- Use a mask
- Calculate the weighted or binary centroid inside mask

Pinhole uncertainty with +/-2 pixel rad variation

Pinhole Uncertainty +/-2 Pixels from the Chosen Radius (8-16-2006)

The National Ignition Facility

Pinhole uncertainty with +/-2 pixel rad variation

n

Pinhole Uncertainty +/-2 Pixels from the Chosen Radius (8-16-2006)

Uncertainty measurement correlates well with image quality

- New algorithm shows more realistic uncertainty compared to noisebased value.
- Reference Images uncertainties are bounded between 0.2 and 0.4.
- Asymmetric or distorted beam caused by bad wave front have multiple blobs after segmentation and therefore higher uncertainty

- Increase in processing time. Since the algorithm has to be executed multiple times (0.7 secs)
- Increase in uncertainty since it captures the position variations due to algorithm parameters