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Must know floor-to-ceiling voltage to compute
safe standoff distances

Tens to
hundreds of
kiloamperes

Tens to hundreds
of kilovolts

Floor-to-ceiling
voltage

No arcing due to
increased

standoff distance
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Double-exponential lightning current model
200 kA peak current      400 kA/_s maximum rise rate()366.8102.010()205etLItekA-¥-¥=-
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Lightning current
model
IL(t)

Model of floor-to-ceiling voltage

Floor-to-ceiling voltage
VL(t)

Z(f)

Building transfer impedance Z(f)
relates IL(t) to VL(t)

IL(t) VL(t)
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Measurement of the building transfer impedance:
spectrum of the injected current |I(f)|
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Measurement of the building transfer impedance:
resulting floor-to-ceiling voltage spectrum

RF source

Spectrum
analyzer |E(f)| Floor-to-ceiling voltage

spectrum

Antenna
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|V(f)| = |E(f)| x floor-to-ceiling height
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Measurement of the building transfer impedance:
spectral division yields the impedance

=
Injected current spectrum

Floor-to-ceiling voltage
spectrum

Building transfer
impedance spectrum

What can we do to
retrieve the phase?
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The technical problem is very difficult, because we
do not have access to the phase of the measured spectra

• We are given the modulus |X(k)| of a complex  Discrete Fourier
Transform (DFT), and we would like to invert the full
DFT to find its corresponding real  time waveform x(n).
Of course, we need to find x(n) uniquely.

• Unfortunately, in the absence of any underlying signal model
or constraints, the loss of either phase or magnitude
information of a complex function is irreversible.  For
our problem, this means that there is no unique inverse
for the DFT.

• Surprisingly, however, under some fairly general conditions,
it is possible to  recover a signal from the phase of its
Fourier Transform or from its magnitude.
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Phase Retrieval Algorithms Have Limitations
• Uniqueness of the Solution:

- For 2D Signals (Images)
The phase retrieval problem is usually (“almost
 always”) unique, if noise issues are ignored.

- For 1D Signals
Unfortunately, uniqueness is a big problem 
for 1D signals

• All phase retrieval algorithms are sensitive to noise
- Require “regularizing” using constraints to make them

effective with measured data

• Steps must be taken to avoid time domain aliasing errors
and leakage

• Many algorithms have serious difficulties with slow convergence 
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Uniqueness Is More Problematic in 1D Than 2D

Theorem: 
A finite-length signal which has an irreducible z-transform 
is uniquely defined (to within a sign, a time shift, and a time 
reversal) by the magnitude of its Fourier Transform.

2D:
It can be shown that because almost all polynomials in two or 
more variables are irreducible, a finite support constraint is 
sufficient (in most cases) to ensure uniqueness.

1D:
Unfortunately, the only one-dimensional polynomials which have 
irreducible z-transforms are those which are of length N = 1 
or N = 2 (N is the length of the sequence). 
So, this result is not particularly useful in practice.
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Several Types of Algorithms Are Available

- Energy reduction algorithm (Fienup et. Al.) - Iterates
with constraints between the Fourier and Time
domains

- Hybrid Input-Output algorithm (Fienup et. Al.)
- Use of Higher-Order Spectra (Bispectrum), (Petropulu et. Al.)
- Wavelet-based algorithms (Yagle et. Al.)
- Homomorphic signal processing algorithms based on

the complex cepstrum or the real cepstrum,
Oppenheim, Schafer, et. Al.

- Some related results from the blind deconvolution literature
(Stark et. Al.)

- Methods based upon the solution of systems of linear
equations (Yagle et. Al.)

Due to Tight Programmatic Budgetary and
Time Constraints, We Chose to Apply the

Homomorphic Approach Using the Cepstrum



ENG-03-0051-0 12
Clark-11/19/2004

Grace A. Clark, Ph.D.

Define the Complex Cepstrum

† 

Given a discrete - time sequence h(n) that has a corresponding z - transform H(z),  we can
define the quantity ˆ H z( ) as follows :

                                                        ˆ H z( ) = log H z( )[ ]

We then define the complex cepstrum ˆ h n( ) as follows :

                                                        ˆ h n( ) = Z-1 ˆ H z( )[ ]
                                                                =  Z-1 log H z( )[ ]{ }

We can implement this with the Discrete Fourier Transform (DFT):

                                                  ˆ h n( )  = IDFT log DFT h(n)[ ]{ }[ ]    
Note :
• The DFT length N must be large enough to avoid cepstral aliasing.
• A complex logarithm is used, and the phase must be unwrapped appropriately.
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Define the Real Cepstrum (or just “Cepstrum”)

† 

Using a real logarithm, let
                                                        ˆ H z( ) = log H z( )

The real cepstrum c n( ) of the real sequence h(n) is then

                                                        c n( ) = Z-1 ˆ H z( )[ ]
                                                                =  Z-1 log H z( ){ }

We can implement this with the Discrete Fourier Transform (DFT) as follows:

                                                  c n( )  = IDFT logDFT h(n)[ ][ ]    
Note :
• The DFT length N must be large enough to avoid cepstral aliasing.
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The Name “Cepstrum”  Was Coined by Bogert,
Healy and Tukey in 1963.

B.P. Bogert, M.J.R. Healy and J.W. Tukey, “The Quefrency
Alanysis of Time Series for Echoes: Cepstrum, Pseuso-
Autocovariance, Cross-Cepstrum, And Saphe Cracking,”
Symp. Time Series Analysis, M. Rosenblatt, Ed., New York,
John Wiley and Sons, Inc., New York, 1963, p.. 209-243.

• They were processing signals containing echoes.
• They found that the log of the power spectrum of a signal 

containing an echo has an additive periodic component
due to the echo.

• So, the Fourier Transform of the log-power spectrum should
have a peak at the echo delay.

• They called the Inverse Fourier Transform of the log-power 
spectrum the “cepstrum” (from “spectrum”).

• “In general, we find ourselves operating on the frequency side 
in ways customary on the time side and vice versa.”

• They also coined “lifter,” “alanysis,” “quefrency,” etc., but
only “cepstrum” has been adopted widely.
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The Phase Retrieval Algorithm Exploits Several Theoretical
Conditions/Properties That Are Often Reasonable in Practice:

• The underlying signal/system H(z) is assumed to obey the
Minimum Phase  condition:
1. log|H(z)| and arg[H(z)] are Hilbert Transforms of

each other
2. H(z) has no poles or zeros outside the unit circle
3. There exists a causal, stable inverse system with

system function H-1 such that
H(z)H-1(z) = 1

† 

n ≠ 0

• Causality: Real and Imaginary Part Sufficiency for Causal 
Sequences: If h(n) is causal, then it is possible to 
recover h(n) from:
1. Only the even part he(n) of h(n)
2. Only the odd part ho(n) of h(n) for 
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Given Only Spectral Modulus         , We Can
Reconstruct Spectral Phase                Using the DFT

= A minimum phase  reconstruction of a finite-length,
   real, causal, stable sequence h(n) corresponding
   to the measured input spectral modulus |H(k)|
= An estimate of the complex cepstrum of h(n) for large N

† 

ˆ h n( )

† 

H(k)

† 

log ⋅[ ]

† 

ˆ H R k( )

† 

cp n( )N-Pt
IDFT

N-Pt
DFT

† 

ˆ h n( )
X

† 

˜ u N n( ) † 

ˆ H k( ) = log H(k) + j arg H(k)[ ]

† 

ˆ H k( ) Save
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† 
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† 
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Example: Simulated noiseless minimum phase
signal x(n), |X(f)|2 , |X(f)|, Arg{X(f)}, c(n)

x(n) |X(f)|2

|X(f)|

Arg{X(f)}

c(n) = Real
Cepstrum of 
h(n)
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Example A: The reconstructed minimum phase
signal           matches the original signal x(n)

† 

ˆ h n( )† 

ˆ h n( )

† 

x n( ) and ˆ h n( )

† 

ˆ H f( )
2

† 

ˆ H f( )

† 

arg ˆ H f( ){ }
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Example A: The agreement between the original and
retrieved signals is excellent (in both magnitude and phase)

† 

X f( )  and ˆ H f( )

† 

arg X f( ){ } and arg ˆ H f( ){ }
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Example C: SNR = 40 dB:
z(n) = x(n) + v(n), where v(n) ~ N[0, 4.26e-4]



ENG-03-0051-0 21
Clark-11/19/2004

Grace A. Clark, Ph.D.

Example C: SNR = 40 dB:
z(n) = x(n) + v(n), where v(n) ~ N[0, 4.26e-4]

† 

X f( )  and ˆ H f( )

† 

arg X f( ){ } and arg ˆ H f( ){ }



Brown et al.-11/19/2004- 22

Lightning current
model
IL(t)

Simulation of floor-to-ceiling voltage

Floor-to-ceiling voltage
VL(t)

Z(f)

Building transfer impedance Z(f)
relates IL(t) to VL(t)

IL(t) VL(t)
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Impedance models used in simulations
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Low resonant frequency model
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Evaluation of floor-to-ceiling voltage model in simulations

Inverse Laplace transformZ(s) IL(s) VL(t)

Exact (closed-form solution)

Inverse Fourier transform
(implemented using IFFT)

Z(f) IL(f) VL(t)

Modeled phase (truncated spectrum)

Inverse Fourier transform
(implemented using IFFT)

ZM(f) IL(f) VL(t)

Phase retrieval|Z(f)| ZM(f)

Retrieved phase (truncated spectrum)
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Cepstrum-based phase retrieval simulation:
low resonant frequency model

Phase retrieval|Z(f)| ZM(f)

Impedance magnitude

|Z
(f)

| (
O

hm
s)



Brown et al.-11/19/2004- 26

Floor-to-ceiling voltage comparison:
low resonant frequency model simulation

Z(f)IL(t) VL(t)

8% error
in peak

Floor-to-ceiling voltage

Modeled phase
Retrieved phase

Exact
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Cepstrum-based phase retrieval simulation:
high resonant frequency model

Phase retrieval|Z(f)| ZM(f)

Impedance magnitude

Truncated
spectrum
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Floor-to-ceiling voltage comparison:
high resonant frequency model simulation

Z(f)IL(t) VL(t)

8% error
in peak

Floor-to-ceiling voltage

Modeled phase
Retrieved phase

Exact
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Cepstrum-based phase retrieval simulation:
actual Site 300 data

Phase retrieval|Z(f)| ZM(f)

Impedance magnitude
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Floor-to-ceiling voltage:
actual Site 300 data

Z(f)IL(t) VL(t)

Floor-to-ceiling voltage
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The lightning spectrum acts as a low-pass filter

Lightning spectrum |IL(f)|

Building impedance |Z(f)|

|VL(f)| = |Z(f) IL(f)|
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Summary and conclusions

• Measurements pose two challenges:
— Truncated spectrum
— Lack of phase

• The cepstrum-based method used shows promise in reconstructing
the phase of the building transfer impedance

• Need wider-bandwidth measurements in some cases
• Future work

— Forward modeling: simulate the building transfer function and
measurement system

— Advanced system identification algorithms
— Deal more effectively with truncated spectrum
— Application and comparison of other phase retrieval methods
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Given a Finite-Length, Real, Causal, Stable Sequence h(n),
We Can Construct a Minimum Phase Realization  of h(n)

† 

ˆ h (n)

† 

ˆ h n( ) = A minimum phase  reconstruction of the finite-length,
   real, causal, stable sequence h(n)
= An estimate of the complex cepstrum of h(n) for large N
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Periodic Real
Cepstrum

† 

h(n)
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ˆ h cp (n) = cp (n) ˜ u N (n) ª ˆ h (n)
for large N

Complex
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Cepstral Window
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Example B: SNR = 50 dB:
z(n) = x(n) + v(n), where v(n) ~ N[0, 4.26e-5]

z(n) |Z(f)|2

|Z(f)|

Arg{Z(f)}

c(n) = Real
Cepstrum of 
h(n)
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Example B: SNR = 50 dB:
z(n) = x(n) + v(n), where v(n) ~ N[0, 4.26e-5]

x(n) and hhat(n)hhat(n)

|Hhaf(f)|2
|Hhat(f)|

Arg{Hhat(f)}
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Example B: SNR = 50 dB:
z(n) = x(n) + v(n), where v(n) ~ N[0, 4.26e-5]

|X(f)| and |Hhat(f)|

Arg{X(f)} and Arg{Hhat(f)}


