Subspace Detection in Seismology

D. Harris

CASIS Workshop 2004 Lawrence Livermore National Laboratory

November 19, 2004

UCRL-PRES-208235

Seismic data are full of (nearly) repeating signals that must be detected, screened and characterized

Current seismic detection practice is concentrated at the extremes of a spectrum of possibilities

Subspace detectors add an uncertain signal model to the usual formulation of the detection problem

Lawrence Livermore National Laboratory, Dave Harris - 11/19/2004 - 4

A single detection framework can span detectors ranging from simple energy detectors to correlators

Processing sequence for detecting swarm events

Example: Nov-Dec 2002 San Ramon, California Swarm

Data credit: NCEDC, Berkeley Seismological Laboratory

Detector dimension and threshold should be set to assure detection of the design events

Lawrence Livermore National Laboratory, Dave Harris - 11/19/2004 - 8

The subspace dimension is chosen to optimize the probability of detection

The subspace detector has a higher noise floor, but significantly better processing gain

Lawrence Livermore National Laboratory, Dave Harris - 11/19/2004 - 10

The subspace detector captures twice as many events as the correlator at the same theoretical P_F

Detection threshold: ~1.5 @ 240 km

The subspace detector has broader coverage in the source region

Lawrence Livermore National Laboratory, Dave Harris - 11/19/2004 - 12

Under plausibly achievable circumstances, subspace detectors may provide as much gain as arrays

Summary: subspace detectors are a promising approach to detecting uncertain seismic signals

- They wrap event detection, location and characterization into a single operation
- They allow systematic exploitation of information about the range of variation in a signal
 - A rigorous statistical design approach is available
 - Theoretical prospect of detectors "dialable" from simple energy detectors to correlators
- Very sensitive detection capability has been demonstrated on an earthquake swarm