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High-precision wave-front control

Adapt to
changing
conditions

High spatial resolution

High frame-rates for
control system

Lisa A. Poyneer’s presentation on Optimal Fourier Control 2




FTR works by filtering the slopes
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Modal control uses a basis set_
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FTR modes are sines and cosines_

§ FTR uses the DFT in the filtering process

Xk, 1] = % S_: S_: xr|m, n| exp <_j27r(lj\7fn T ln))

m=0 n=0

§ Modal coefficients are obtainable directly from the DFT values

1
< z[m,n|,Ckm,n| >= —Re{X|k, ]}
Dy
—1
< zm,n|,Sgim,n| >= —Im{X|k, ]}
Dy 1
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Modes are eigenfunctions

§ Fourier modes are eigenfunctions of linear, shift-invariant (LSI)
systems

§ The modes for the slopes (on a square aperture) are the same as the modes for
the phase

§ A cosine of phase at frequency [k,I] produces x- and y-slopes only at the cosine
and sine of that frequency [k,I]

§ Where Mx[k,I] describes the filter which measures the x-slopes from actuator

commands
phase x-slope
Ciilm,n] - ACk 1lm, n] + BSk 1|m, n]
Sk.ilm,n] —BCy 1lm,n| + ASk ;|m, n]

A = Re{M,[k,1]}, B = —TIm{M,[k,I]}
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Optimal modal control scheme

§ We follow Altair’s
iImplementation and assume " ~
an approximate model of —:@__’ 2 —’@_—S’
control system (exact in !
simulation case) for each of m
the independent modes.

§ We control a mode with
feedback in the presence of
noise.

Block diagram of control loop
for a modal coefficient
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Optimize the squared-residual error

§ Since the noise at any step is independent of past errors, if we
minimize on the measurement s, we minimize on the residual error.

§ If we had perfect knowledge we would minimize

2

! (M (w) + N(w)| dw

j:/|1+exp(—jw)H(w)

§ Butwe don't... so we have to estimate the open-loop PSD from the
closed-loop measurements using

M (w) + N(w) = |1 + exp(—jw)Ho(w)|” 5(w)
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Gains are incorporated into filter
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‘Modes correspond to PSF locations

§ Each Fourier mode lives at a specific spatial frequency pair [K,|]

§ Because the PSF is approximately the PSD of the residual phase (to
second order), each Fourier mode appears at a specific location in the

PSF
Black = 0, White = 1
A Waffle
k,I=N/2
/ n
Piston
f—Tki=0
Frequency domain PSD/power at each mode PSF
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Significant reduction in residual error

MSE in band, decimated through time
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N=48, NGS Mag 8 example for 8 iterations
of gain optimization
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Contrast improved in PSF

§ N=48 case with WFS SNR of 2.16
§ Strehl increased from 0.75 to 0.87 (+12%)
§ MSE in band reduced from 0.224 to 0.074 (3 times less)

Before After
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Optimal filter reflects conditions

. . Wind direction
§ Input phase aberration is a

frozen sheet of phase
moving across the aperture

§ Deformable Mirror (DM) has
unknown low-pass response
which attenuates high spatial
frequencies

§ Optimal gains compensate
for both DY

compensation

Example filter, N=64
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_Trade bandwidth and sensor errors

Error types with SNR

1, . —s
ool § At high SNRs, optimal
E A'g;\\ gains produce equivalent
T: S~ or more measurement
z - ] 5 error but less temporal
= 0001 N p
error than before
T T . § Atlow SNRs, optimal
Const. Meas. —a—+ Const. Band, —+— gains produce less
Opt. Meas. —a— Opt. Band. —=—

measurement error but
more temporal error than

Data for N=48, median over a set before
of 25 random phase screens
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Computational load is satisfiable today

§ FTR each timestep: 15N lg N + 20N?
§ Estimating periodograms for t steps of telemetry:

N2(5+251gt)
§ Averaging the periodograms and finding the optimal gain (k is for
evaluations in root-finding):

N2(1+ k) + 4k

§ Assuming k = 10 (using fast method), a 64x64 system at 2.9k kHz has
a maximum load of 1.43 GFLOPs/sec.
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OFC is both fast and smart

§ Optimal Fourier Control combines the best of state-of-the art
approaches:

§ computationally efficient
§ adaptive control optimizes performance given current observing conditions

§ Further research areas
§ sensitivity analysis to determine performance across a wide range of conditions
§ exploration of more complex control laws or predictive control
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