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High-precision wave-front control
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FTR works by filtering the slopes

WFS slopes

FFT
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Fix boundary
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Modal control uses a basis set

WFS slopes

Slopes-to-Modes
matrix

Phase
estimate

Modal
gains
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FTR modes are sines and cosines

§ FTR uses the DFT in the filtering process

§ Modal coefficients are obtainable directly from the DFT values

X[k, l] =
1

N

N−1∑
m=0

N−1∑
n=0

x[m, n] exp

(
−j2π(km + ln)

N

)

< x[m, n], Ck,l[m, n] >=
1

Dk,l

Re {X[k, l]}

< x[m, n],Sk,l[m, n] >=
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Dk,l

Im {X[k, l]}
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Modes are eigenfunctions

§ Fourier modes are eigenfunctions of linear, shift-invariant (LSI) 
systems
§ The modes for the slopes (on a square aperture) are the same as the modes for 

the phase

§ A cosine of phase at frequency [k,l] produces x- and y-slopes only at the cosine 
and sine of that frequency [k,l]

§ Where Mx[k,l] describes the filter which measures the x-slopes from actuator 
commands

A = Re{Mx[k, l]}, B = −Im{Mx[k, l]}

Ck,l[m, n] ACk,l[m, n] + BSk,l[m, n]

−BCk,l[m, n] + ASk,l[m, n]Sk,l[m, n]

phase x-slope
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Optimal modal control scheme

§ We follow Altair’s 
implementation and assume 
an approximate model of 
control system (exact in 
simulation case) for each of 
the independent modes.

§ We control a mode with 
feedback in the presence of 
noise.
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Block diagram of control loop 
for a modal coefficient
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Optimize the squared-residual error

§ Since the noise at any step is independent of past errors, if we 
minimize on the measurement s, we minimize on the residual error.

§ If we had perfect knowledge we would minimize

§ But we don’t... so we have to estimate the open-loop PSD from the 
closed-loop measurements using

J =

∫ ∣∣∣∣ 1

1 + exp(−jω)H(ω)

∣∣∣∣
2

[M(ω) + N(ω)] dω

M̂(ω) + N̂(ω) = |1 + exp(−jω)H0(ω)|2 Ŝ(ω)
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Gains are incorporated into filter

Gain
optimizer

WFS slopes
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Modes correspond to PSF locations

§ Each Fourier mode lives at a specific spatial frequency pair [k,l]

§ Because the PSF is approximately the PSD of the residual phase (to 
second order), each Fourier mode appears at a specific location in the 
PSF

PSD/power at each mode PSFFrequency domain
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Significant reduction in residual error

§ Use of optimal gains 
improves performance
§ significant reduction in 

residual MSE at each 
timestep

§ less variation in MSE at 
each timestep

N=48, NGS Mag 8 example for 8 iterations 
of gain optimization
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Contrast improved in PSF

§ N=48 case with WFS SNR of 2.16

§ Strehl increased from 0.75 to 0.87 (+12%)

§ MSE in band reduced from 0.224 to 0.074 (3 times less)

Before After
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Optimal filter reflects conditions

§ Input phase aberration is a 
frozen sheet of phase 
moving across the aperture

§ Deformable Mirror (DM) has 
unknown low-pass response 
which attenuates high spatial 
frequencies

§ Optimal gains compensate 
for both

Example filter, N=64

Wind direction

DM 
compensation



14Lisa A. Poyneer’s presentation on  Optimal Fourier Control

Trade bandwidth and sensor errors

§ At high SNRs, optimal 
gains produce equivalent 
or more measurement 
error but less temporal 
error than before

§ At low SNRs, optimal 
gains produce less 
measurement error but 
more temporal error than 
beforeData for N=48, median over a set

of 25 random phase screens
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Computational load is satisfiable today

§ FTR each timestep:

§ Estimating periodograms for t steps of telemetry:

§ Averaging the periodograms and finding the optimal gain (k is for 
evaluations in root-finding):

§ Assuming k = 10 (using fast method), a 64x64 system at 2.5k kHz has 
a maximum load of 1.43 GFLOPs/sec.

15N
2 lg N + 20N

2

N
2(5 + 2.5 lg t)

N
2(1 + k) + 4k
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OFC is both fast and smart

§ Optimal Fourier Control combines the best of state-of-the art 
approaches:
§ computationally efficient

§ adaptive control optimizes performance given current observing conditions

§ Further research areas
§ sensitivity analysis to determine performance across a wide range of conditions

§ exploration of more complex control laws or predictive control


